2,920 research outputs found

    Photometric Redshift Training Survey Times

    Get PDF
    Table of telescope time required for photometric redshift training for the Large Synoptic Survey Telescope (LSST); this table was produced for an Astro2020 Decadal Survey white paper. Includes explanatory information

    Photometric Redshifts for Next-Generation Surveys

    Full text link
    Photometric redshifts are essential in studies of both galaxy evolution and cosmology, as they enable analyses of objects too numerous or faint for spectroscopy. The Rubin Observatory, Euclid, and Roman Space Telescope will soon provide a new generation of imaging surveys with unprecedented area coverage, wavelength range, and depth. To take full advantage of these datasets, further progress in photometric redshift methods is needed. In this review, we focus on the greatest common challenges and prospects for improvement in applications of photo-zz's to the next generation of surveys: - Gains in performanceperformance -- i.e., the precision of redshift estimates for individual galaxies -- could greatly enhance studies of galaxy evolution and some probes of cosmology. - Improvements in characterizationcharacterization -- i.e., the accurate recovery of redshift distributionsdistributions of galaxies in the presence of uncertainty on individual redshifts -- are urgently needed for cosmological measurements with next-generation surveys. - To achieve both of these goals, improvements in the scope and treatment of the samples of spectroscopic redshifts which make high-fidelity photo-zz's possible will also be needed. For the full potential of the next generation of surveys to be reached, the characterization of redshift distributions will need to improve by roughly an order of magnitude compared to the current state of the art, requiring progress on a wide variety of fronts. We conclude by presenting a speculative evaluation of how photometric redshift methods and the collection of the necessary spectroscopic samples may improve by the time near-future surveys are completed.Comment: Posted with permission from the Annual Review of Astronomy and Astrophysics, Volume 60, copyright 2022 Annual Reviews, http://www.annualreviews.org

    A Cosmic Variance Cookbook

    Full text link
    Deep pencil beam surveys (<1 deg^2) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper we provide tools for experiment design and interpretation. For a given survey geometry we present the cosmic variance of dark matter as a function of mean redshift z and redshift bin size Dz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z, Dz and stellar mass m*. We also provide tabulated values and a software tool. We find that for GOODS at z=2 and with Dz=0.5 the relative cosmic variance of galaxies with m*>10^11 Msun is ~38%, while it is ~27% for GEMS and ~12% for COSMOS. For galaxies of m*~10^10 Msun the relative cosmic variance is ~19% for GOODS, ~13% for GEMS and ~6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z=2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies cosmic variance is less serious.Comment: 8 pages, 4 figures, 5 tables, submitted to Ap

    What Genetics Offers Geobiology

    Get PDF
    For over 50 years, the Parker Brothers’ board game “Clue” has maintained its position as the classic family detective game. A murder has been committed in the mansion, but we don’t know where, by whom, or how. Was it Professor Plum in the study with a knife, or Miss Scarlett in the ballroom with a candlestick? Through rolls of the dice, fragments of information patiently accumulated piece-by-piece, and the application of logic, players construct a case to figure out “whodunit”. Because there are several potential solutions to the problem, the key challenge is to figure out what happened by understanding how it happened
    • …
    corecore